文章编号: 0258-7025(2002)05-0455-04

用 Sagnac 干涉法和固定分析法测量 光纤偏振模的色散

刘秀敏^{1,2},李朝阳¹,李荣华¹,杨伯君¹,张晓光¹

(1 理学院, 2 电子工程学院, 北京邮电大学, 北京 1000876)

提要 介绍了用 Sagnac 干涉法和固定分析法对光纤偏振模色散的测量原理和测试实验系统。与固定分析仪测量 法对比,Sagnac 干涉法的实验装置更趋简单,测量光谱更具有可读性。在目前偏振模色散测量仪器价格昂贵的情况 下,此方法具有很高的实用价值。

关键词 固定分析法,Sagnac 干涉法,偏振模色散

中图分类号 TH 744.3; TN 247 文献标识码 A

Polarization Mode Dispersion Measurement Using Sagnac Interferometer and Fixed Analyzer

LIU Xiu-min^{1,2}, LI Chao-yang¹, LI Rong-hua¹, YANG Bo-jun¹, ZHANG Xiaoguang¹ (¹School of Science, ²Electronics Engineering School, Beijing University of Posts and Telecommunications, Beijing 100876)

Abstract The principle and measurement system of Sagnac interferometer and fixed analyzer are introduced. The polarization mode dispersion of optical fiber by a Sagnac interferometer is measured. Comparing with fixed analyzer, Sagnac interferometer is simpler and spectrum is more readable.

Key words fixed analyzer, Sagnac interferometer, polarization mode dispersion

1 引 言

随着光通信系统的飞速发展,传输的比特率也 越来越高,脉冲的时间宽度也随之变窄,偏振模色散 所造成的积累效应对系统传输性能的影响也更趋明 显。所谓的偏振模色散是指由于光纤在制造、成缆、 外部环境变化及光纤老化等各种条件影响下所造成 的脉冲展宽。这是由于两个正交偏振主态之间失去 简并性,具有不同的传输群速度所造成的。由于各种 外界条件的变化,导致偏振模色散与群速度色散存 在最大的差别,即偏振模色散不再是一定量,它随外 界的压力、温度等各种条件而变化。对于如何准确测 量偏振模色散成为研究偏振模色散的一个重要课 题。

国外制造的单模光纤偏振模色散测试仪器非常 昂贵,这对如何在现有条件下找到简单、准确的测量 方法成为国内研究的一个主要方向。偏振模色散的 测量方法有多种,世界各地的实验室也有大量的相 关报道^[1~3],但所有这些方法都可以归结为两类,一 是时域法,二是频域法。无论是哪种方法都是寻找测 量两个正交偏振主态之间的差分群时延(DGD)。时 域法中有脉冲延迟法、干涉法等。频域法中有邦加球 法、琼斯矩阵法、固定分析法(也称光谱分析法)等。

在各种测量方法中,国内对固定分析法做了一

收稿日期:2001-01-02; 收到修改稿日期:2001-02-26

基金项目:863 计划(2001AA122041)、国家自然科学基金(60072042)、教育部博士点基金、北京邮电大学校基金和华为科 技基金资助项目。

作者简介:刘秀敏(1971—),女,北京邮电大学博士生,主要从事光纤通信系统中偏振模色散的研究。E-mail:liuxiumin @263.net 些报道^[4~6],主要原因是此种方法具有对器件要求 不高,结构简单,国内一些实验室的现有条件就能实 现的优点。本文报道了一种新的 Sagnac 干涉法,通 过与固定分析仪法的对比发现,此法具有结构更简 单,准确性更高,测量频谱的可读性更强的优点,并 且一般的实验室都能实现,具有很高的实用价值。

2 理论分析

图 1(a)是固定分析法测量原理方框图,实验中 的起偏器和检偏器是由两个偏振分束器组成的。从 图中可以看出宽带光源 EDFA 发出的光经起偏器 后变成线偏振光,并进入待测光纤,再经检偏器使两 个偏振光在同一偏振方向上产生干涉,而两个偏振 光的光程差会因为光波长的变化而改变,并从光谱 功率曲线上反映出来,由此计算出光纤的差分群时 延(DGD)。由于固定分析法对偏振模色散的测量原 理过去的文献都有报道,本文不再赘述^[4~6]。图1 (b)是 Sagnac 干涉法测量原理方框图。从图中可以 看出,Sagnac 干涉法是利用一个 50:50 的耦合器把 从 EDFA 输出的一束光在耦合器的另一端的两个 出口分成两列相同能量的光波,并且把待测光纤的 两端与这两个出口环接起来,从而使这两列波以相 反的方向通过待测光纤。

从原理上讲,Sagnac 干涉法是一个稳定的干涉 仪,是在一根光纤里沿两个相反方向传播波在耦合 器内的干涉。在其内部的传输受到两个干涉波的偏 振态,及光纤环的瑞利逆散射和耦合器耦合率 0.5 偏离的影响,可以从 100%降到接近于零。另外由于 在环内沿相反方向传输的波是以不同的双折射轴入 射的,所以通过偏振控制器调节双折射可以实现某 波长在干涉仪里的传输从最大到最小变化^[7,8]。因为 在耦合器里只有相同偏振方向的光波才能发生干 涉,所以在干涉仪里的传输是随着波长变化的,如果 像 EDFA 这样的宽带光源的光进入干涉仪,由于光 纤双折射与波长有关,因而在测量频谱上肯定会出 现一些极大值和极小值。当脉冲的波长从 λ_i 变化到 λ_N 时,满足

$$\Delta n \left(\frac{2\pi}{\lambda_1} - \frac{2\pi}{\lambda_N} \right) Z = 2\pi N \quad (N = 1, 2, 3 \cdots) \quad (1)$$

检测到光功率的极大值

$$N = \Delta n \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_N} \right) Z \tag{2}$$

与前面得出的关系结合在一起,可得

$$\Delta \tau = \frac{N \lambda_N \lambda_1}{c(\lambda_1 - \lambda_N)} \tag{3}$$

在一般情况下,光通信系统是弱模耦合,所以如果是 短光纤(<1 km),PMD = $\frac{\Delta \tau}{Z}$;如果是长光纤,PMD = $\frac{\Delta \tau}{\sqrt{Z}}$ 。

从上面推出的结果可以看出,固定分析法和 Sagnac 干涉法所用的计算公式是完全相同的。如果 仔细分析测试原理,得出这样的结论就很容易理解 了。因为它们都是利用光波干涉的原理,当光程差满 足 2π 的整数倍时会出现干涉相长,在频谱上出现 "峰",当光程差满足 2π 的奇数倍时出现干涉相消, 并在频谱上出现"谷"。

3 用固定分析法及 Sagnac 干涉法测量 PMD 实验

本实验的色散位移光纤(DSF)制造于 90 年代 初期,厂商没有偏振模色散的实际数据,所以直接对 DSF 光纤进行测量很难知道结果的准确性。为此我 们首先对本实验室购进的保偏光纤(PMF)进行测 量,然后根据厂商提供的数据,计算出偏振模色散的 数据,并与实验结果进行对照,以验证实验结果,并 由此观察固定分析法及 Sagnac 干涉法测量偏振模 色散的准确性。

长度为 14.2 m 的保偏光纤在 1.31 μ m 处测得 拍长 $L_B = 3.3$ mm。根据 $\Delta n_{\text{eff}} = \frac{\lambda}{L_B}$,得出 $\Delta \tau = \frac{\Delta n_{\text{eff}}}{c}Z = 18.8$ ps。

由于 EDFA 的频谱不太平坦,在短波长处存在

ALCO ILLIANA LIANA.

一侧峰,为避免由增益不平坦所带来的不必要的误 差,我们选择波长处于 $\lambda_1 = 1542 \text{ nm}, \lambda_N = 1560$ nm, $\Delta \lambda = 18 \text{ nm}$ 。用固定分析法和 Sagnac 干涉法测 量结果如图 2(a),(b)所示,两图几乎完全一样,在 $\lambda_1 和 \lambda_N$ 之间 N = 42,用两种方法测量保偏光纤的偏 振模色散是相同的。根据(3) 式把图中数据代入 $\Delta \tau$ = 18.7 ps。结果与厂商提供的数据几乎一致。这说 明用固定分析法和 Sagnac 干涉法的得到测量结果 是正确的。

在此基础上,我们对一段 7.9 km 的 DSF 光纤 进行测量。图 3(a),(b)是分别用固定分析法和 Sagnac 干涉法所得到的频谱图,利用图中所给的数 据,计算如下,固定分析法: $\Delta \tau = \frac{2 \times 1.5426 \times 1.5602 \times 10}{3 \times 17.6} = 0.9 \text{ ps}(在 \lambda_1 = 1.5426 \text{ nm} \mathbf{n} \lambda_2 = 1.5602 \text{ nm}$ **之间有**2 个干涉周期)。 $Sagnac 干涉法: <math>\Delta \tau = \frac{3 \times 1.5436 \times 1.5701 \times 10}{3 \times 26.5} = 0.9 \text{ ps}(在 \lambda_1 = 1.5436 \text{ nm} \mathbf{n} \lambda_2 = 1.5436 \text{ nm} \mathbf{n} \lambda_2 = 1.5701 \text{ nm}$ **之间**f 3 个干涉周期)。测量结果一致。

212.8

nW

169.

127.2

图 2 用固定分析法(a)和 Sagnac 干涉法(b)测量 PMF 光纤得到的频谱图

Fig. 2 Spectrum of PMF fiber measured by fixed analyzer method (a) and by Sagnac interferometer (b)

图 3 用固定分析法(a)和 Sagnac 干涉法(b)测量 DSF 光纤得到的频谱图

Fig. 3 Spectrum of DSF fiber measured by fixed analyzer method (a) and by Sagnac interferometer (b)

我们在多次测量实验中发现,用固定分析法时 无论怎样通过调节偏振控制器来改变光源的偏振

327.0

261.6

196.2

130.8

65.4

0.00

nW

态,在频谱上最多只能出现 2 个峰的干涉谱,但对于 Sagnac 干涉法,通过改变偏振态的方向,可以得到 3 个峰的干涉谱。这是因为固定分析法中起偏器和检 偏器是由偏振分束器构成的,而相干条纹的好坏与 光的相干性有直接关系。起偏器和检偏器的带宽限 制降低了一些波长偏振光的消光比,在中心部分的 波长消光比大,在两侧波长的消光比小,使得在图 2 (a)频谱图两侧的干涉条纹的强度要比图 2(b)的 弱,在图 3(a)干涉谱的两侧不能形成明显的干涉 峰。我们知道干涉谱的峰值个数越多,计算结果也就 越准确。另外,Sagnac 干涉法所得到的干涉谱中峰 与谷之间相对能量对比要比通过固定分析法得到的 强。所以我们认为,Sagnac 干涉法不仅实现起来简 单,更具有可读性,而且在偏振模色散比较小的情况 下,Sagnac 干涉法所得的结果更可靠一些。

4 结 论

本文利用 Sagnac 干涉法对色散位移光纤的偏 振模色散进行了测量,并与固定分析法对比发现, Sagnac 干涉法不仅实验装置简单,而且频谱可读性 更强,在偏振模色散比较小的情况下,Sagnac 干涉 法的测量结果更准确。

参考文献

- A. Galtarossa, M. Schiano, C. G. Someda *et al.*. Two different methods for measuring polarization mode dispersion in singlemode fibres [J]. *Electron. Lett.*, 1991, 27:2292~2293
- N. Gisin, J. P. Pellaux. Polarization mode dispersion: time versus frequency domains [J]. Opt. Comm., 1992, 89:316~323
- 3 N. Gisin, R. Passy, J. P. Von der Weid. Definitions and measurements of polarization mode dispersion: interferometric versus fixed analyzer methods [J]. *IEEE Photon. Technol. Lett.*, 1994, 6(6):730~732
- 4 Zou Linsen, Lei Fei. The measurement of polarization mode dispersion in single mode optical fibers by optical spectrum analyzer [J]. Journal of China Institute of Communications (), 1999, 20:75~78 (in Chinese)
- 5 Lei Fei. Fiber polarization mode dispersion testing instrument [J]. Study on Optical Communications, 1999, 94:38~40
- 6 Gong Yandong, Guan Yali, Jian Shuisheng. Measurement of polarization mode dispersion in fiber [J]. Acta Optica Sinica (光学学报), 1997, **17**(6):731~736 (in Chinese)
- 7 D. B. Mortinore. Fiber loop reflectors [J]. J. Lightwave Technol., 1988, 6(7):1217~1224
- 8 T. A. Birks, P. Morkel. Jones calculus analysis of single-mode fiber Sagnac reflector [J]. Appl. Opt., 1988, 27(15):3107~3113